Exercise 5

Verify the Cauchy-Schwarz inequality and the triangle inequality for the vectors in Exercises 3 to 6.

$$
\mathbf{x}=(1,-1,1,-1,1), \mathbf{y}=(3,0,0,0,2)
$$

Solution

Cauchy-Schwarz Inequality

Check the Cauchy-Schwarz inequality $|\mathbf{x} \cdot \mathbf{y}| \leq\|\mathbf{x}\|\|\mathbf{y}\|$ for the given vectors.

$$
\begin{aligned}
|\mathbf{x} \cdot \mathbf{y}| & =|(1)(3)+(-1)(0)+(1)(0)+(-1)(0)+(1)(2)|=|5|=5 \\
\|\mathbf{x}\| & =\sqrt{1^{2}+(-1)^{2}+1^{2}+(-1)^{2}+1^{2}}=\sqrt{5} \\
\|\mathbf{y}\| & =\sqrt{3^{2}+0^{2}+0^{2}+0^{2}+2^{2}}=\sqrt{13}
\end{aligned}
$$

As a result,

$$
|\mathbf{x} \cdot \mathbf{y}|=5 \leq \sqrt{5} \sqrt{13}=\|\mathbf{x}\|\|\mathbf{y}\|
$$

which means the Cauchy-Schwarz inequality is satisfied.

Triangle Inequality

Now check the triangle inequality $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$ for the given vectors.

$$
\begin{aligned}
\mathbf{x}+\mathbf{y} & =(1,-1,1,-1,1)+(3,0,0,0,2)=(4,-1,1,-1,3) \\
\|\mathbf{x}+\mathbf{y}\| & =\sqrt{4^{2}+(-1)^{2}+1^{2}+(-1)^{2}+3^{2}}=\sqrt{28}=2 \sqrt{7} \\
\|\mathbf{x}\| & =\sqrt{1^{2}+(-1)^{2}+1^{2}+(-1)^{2}+1^{2}}=\sqrt{5} \\
\|\mathbf{y}\| & =\sqrt{3^{2}+0^{2}+0^{2}+0^{2}+2^{2}}=\sqrt{13}
\end{aligned}
$$

As a result,

$$
\|\mathbf{x}+\mathbf{y}\|=2 \sqrt{7} \leq \sqrt{5}+\sqrt{13}=\|\mathbf{x}\|+\|\mathbf{y}\|
$$

which means the triangle inequality is satisfied.

